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It is proved that a game of pursuit has a value in a class of piecewise open-loop strategies (POLS) 

defined somewhat differently from those considered previously for two players [l], in differential 

games with several evaders and pursuers. 

Various aspects of the existence of the value of a two-person game were considered in [2-6], 
where an extensive bibliography can be found. The problem of approach-departure with 
several target sets was considered in [7], where the problem of the existence of an equilibrium 
position was solved not in the class of POLS, as is done below, but in the class of piecewise 
positional strategies. 

1. STATEMENT OF THE PROBLEM 

We consider a problem of pursuit with bounded time T between a team of pursuers 
P=(p,, . ..) Pm) and a team of evaders E ={E,, . . . , E,,,), which we shall treat as a zero-sum 
two-person game between P and E. 

Suppose that the equations of motion of players 4 (the pursuers, i = 1,2, . . . , n) and Ej (the 
evaders, j = 1, 2,. . . , m) are 

Pi: xi = fi(Xi, Ui), Ui E Vj, Xj(0) = X9 

Ej:~j =gj(yj$Uj)v Dj E vi,’ yj(O)= yy (1.1) 

XiryjERk, ViCR”‘, VjCRm’ 

where Ui and Vj are compact sets. 
Let X, = (xy, . . . , x:), Y, = (yy, . . . , yi). We let I(X,, Y,,, JT) denote the game which 

begins at time t=O from initial positions (X,, Y,) with payoff function JT. In the class of 
POLS, in the case m = n = 1, it has been proved [l] that an E-equilibrium situation exists in this 
game when the payoff function is 

Below, using a similar method and a slightly modified definition of POLS, we shall prove the 
analogous assertion for the function 
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JT = C min minllXi(t) - Y(t)! 
j te[O,T] i 

Here, as later, summation over j runs from 1 to m, and over j, from 1 to n. 
Some corollaries of this result are relevant for games of pursuit with unbounded time. 
We shall consider system (1.1) under the following assumptions: 
(a) the functions fi(xi, u,)(g,(y,, vi)) are defined and continuous (xi, ui)~Rk xU,(yj, V~)E 

Rk x5); 
(b) the functions 4(x,, ui)(gi(yi, vi)) satisfy a local Lipschitz condition as functions of x,(y,) 

with a constant independent of ui(uj); 
(c) for all (‘i, ui>(Yi9 vj> 

Then for any choice of measurable functions ui = ui(t), vi =vj(t) defined in [0, T] with values 
in lJi and Vj, systems (1.1) have solutions xi = x,(t, xp, s(t)), yj = yj(t, yy, vi(t)) with initial 
data (0, xp), (0, yy), defined in [0, T]. Moreover, numbers R and 6, exist such that the 
inequalities 

hold for any measurable functions ui = u,(t) eUi, vi = vi(r) EY defined in [0, T] and any 
xi E D,O(xy), yj E Dg (~9). In addition, constants L= L(D,(O)) and M exist such that, for any xi, 
Xt E 4&X;), $9 y; E DZJY;), t,, t, E [0, T], and any measurable functions ui = u,(t) l Ui, 
vj = Vi(t) E vj 

llXj(t,,Xj,Ui(r))-xi(r*,Xi~ui(f))J1~ Mlfl -‘*I (1.2) 

and analogous inequalities hold with xi and ui replaced by yj and vi. 
We will now describe the game-theoretic elements of the problem. By a finite partition CT of 

[0, T] we mean a collection of distinct numbers (0, T, t, E (0, T), I = 1, . . . , r), indexed in 
increasing order. The set of all CJ will be denoted by C. Every partition CJE C generates a 
partition CT, = (t,, . . . , T] of the interval [tl, T]. 

Definition 1. A piecewise open-loop strategy (POLS) Q, for player 4 is a pair (0, Q,), o E Z 

C : 0 = to < t, < t, <...< rr < tr+, = T (1.3) 

where Q, is the set of mappings .!$(r = 0, 1, . . . , r) that produce, given the quantities 

(1.4) 

a measurable function u, = s(t) E U defined for t E [tl, t,,,). A similar definition yields a POLS 
S, for player Ej. The sequence (Q,, . . . , Q,,, S,, . . . , S,,,) will be called a situation. Under our 
assumptions, in every situation (Q,, . . . , S,,,) we can define trajectories of motion xi(t)yj(r) for 
t E [0, T], so that we can define the value of the payoff function 

K(Q,,...,Q,, S,,..., S,) = C min lTliIlllXi(t)- Yj(t)ll 
j re[O,T] i 

(1.5) 

Player P aims to minimize the quantity K(Q,, . . . , S,,,) while player E aims to maximize it. 
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Consider the following sets 

I$( = 
1 

U U C’(Xi), Gij = U 
XiS~,~Xj’) Ocrcr/ 

U "(Yj) 
Yj"Qq(Yq) Osrsr/ 

where C’(xi) and C’(yj) are the sets of points that players 8 and E, may reach at time t, 
having begun to move at the initial time from xi, yj along trajectories of system (1.1). 

Let Ai(xi, 2) and A,(y,, 2) be the set of all trajectories of players c and Ej defined in [0, T] 
and starting at xi, yj, and let A,(x,z) and Aj(yj2) be the closures of these sets in the space of 
continuous functions. 

We shall need the following notation 

w, =Da,(x~)x...xDg~(x~~x~~(YP~x...~~~~(Yo~ 

w = G” x xG$ x G” x...xG” I f) **. ” El 4n 

X=(x,,..., X,)9 y=(Yl,...,Ym)~ ‘i_Yj ’ Rk 

R =@,..., p,), pi E R’, pq = rr$nllxp - yy! 

IIX, - x,II= cltx,’ - xftl, l/Y, -Y,&;ly; -y;k /R, -R2ll=Cb; -p;l 
i j j 

- - 
A(X,~)=A,(x,,z)xA,(x,,~)x...xA~(x,,2) 
-- 
A(y,z)=A,(~~,~)x...xA(y,,~) 

The game starting at initial position (X,, Y,,), with payoff function (1.4), in which players P 
and E may use POLS, will be denoted by I(X,, YO), and its value by V(X,, YJ. 

2. SOME AUXILIARY GAMES 

We will consider a game l-(X,, Y,, CT,) which differs from I-(X,,, Y,) only in the information 
state of the players and the class of admissible strategies. Let ‘3, E Z (1.3). In the game r(X,, 
Y,, o,), players Ej use POLS as in Definition 1. 

Definition 2. A piecewise open-loop co-strategy Qi of player G in the game T(X,, Y,, CT,) is 
a family of mappings bf(f = 0, 1, . . . , r) that produce, given the quantities (1.4) and controls 
vi(t), t E [t,, t,+l), a measurable function II, = u,(t) E U, defined for t E [t,, t,+,). 

Define numbers Y(X,, Y,, o,, R,) as follows: 

V(X,,Y,,R,,q)= mum h W,,, (4 1, Y,+, (4 ), RI,, ,o/+I ) 
YI+I(I)EA(Y/.~~li)XI+,(1)EA(Xl.dtl)- 

(X,,Y!)E w,, At, =tl+l -tl, RI+, =(pf+‘.....plm+‘) 

p::” =min pf, 
{ 

min minllxf+‘(f)-y:+‘(r)11 , l=O,...,r-1 
f~[O&l i I 

yX,,Y,,R,t~,)= 
~,+l(t* Xr+~(tW(XrA+) j 

min Fmin(p>, 

,,$E Im/nllx~+‘(t)-y~+l(t)ll . 
* r I 

(2-l) 

Theorem 1. 1. Formula (2.1) defines the value of the game I-(X,,, Y,, o,), which is equal to 
Y& y,, 4, ql). 

2. The functions MX,, Y,, R,, a,) satisfy Lipschitz conditions in W, xR:, i.e. for any (X:, 
Y;, R;), X;, Y;, R,+yxR,m 
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Ill(Xf,Y~,R~,a,)-4i(X:,Y:,R:,a,)~IIR~ -R;~+cL’T-‘fh(~lX; -X;i+liY; -Yj?l) (2.2) 

where L is the number occurring in inequalities (1.2). 

Proof. The first part of the theorem is proved on the basis of the definition of an 
&-equilibrium situation and the definition of r(X,, Y,, R,, 0,-J. Inequality (2.2) will be proved 
by induction. 

Let us prove (2.2) for I= r. It follows from the definition of Y(X,, Y,, R,, 0,) that for any 
E > 0 controls $(t), r&r)r E [0, At] exist such that 

I, j = IP~’ - P~‘l 

z2j =,EEz Im~lllxj+i(r,x),ut(t))-y;“(t,y:,u:(?))ll- 
* r 

-Ilx;+‘(t,xT,UiZ(I))-yf+‘(t,y?,u:(t))#( 

Using (1.2), we obtain 

izj S max maxemf 
te[O,&,] i 

(Ix,! - x3 ll+lly; - y; II) s 

Se ar(Ilx: - x;ll+lly) - y;ll) 

(2.3) 

(2.4) 

It follows from (2.3) and (2.4) that 

Since E is arbitrary, this gives (2.2) for I= r. 

Theorem 2. Let o, Q’E Z and 

o= {OJ, ,...,f1,f[+l,...r T}, d={O,fl ,..., t,,t*,tl+ ,,..., T) 

Then 

(2.5) 

(2.6) 

where L and M are the numbers occurring in (1.2). 

Proof. Inequality (2.5) is true because team E, playing in the game _T(X,, Y,, R,, a), may 
always guarantee itself the value U(X,, Y,, R,, a’). Let us prove (2.4). For any E > 0, controls 
W, u3(0, +), 
(s = 1,2) 

v:(r) exist such that for X:+, =(xi(Ar,, xf, u;(f))), Y& = (yj(dl, yf, u;(t)) 



Existence of the value of a many-person game of pursuit 597 

Hence, using (2.2) we obtain 

o~~(X,,Yr,R,,o;)-V(X,,Y,.R,.~r)~ 

c II@+, - @+I II+ eLrm(lX1+, - x:+1 l~+llY:+1- V+l II) + E 

Using (1.2), we obtain 

(2.7) 

Hence 

04 ~(x,,y,,R,,o;)-V(X,.Y,.R,,a,)~ P$,+I -$I+& 

This inequality immediately implies the conclusion of the theorem. 
Let us consider the quantity _V(X,, YO) = supasz V(X,, Y,, R,, CT) and the partitions cr(‘) E Z 

given by 

a(‘)= 
i 
a,; ,..., 2’TJ 

2 2’ 1 
(2.8) 

Theorem 3. 

Proof. By Theorem 2, the sequence V(X,, Y,, R,, d’)) is non-decreasing, and so has a limit 
lim,,_~(X,, Y,, R,, d')) = V,. Suppose the theorem is false; then V, <V(X,, YJ. Choose a 
partition 0 = (0, t,, . . . , t,, T) so that 

and a number M,, such that, for all r > M,, 

Then 

_V(X,,Y,,R,,o)~~(X,,Y,,R,,o+o’~‘) 

~V(X,.Y,,Ro.cr+a"')-~(Xo,Yo,Ro,~~r~)~~6b (2.9) 

Indeed, the first inequality of (2.9) follows from Theorem 2, and the left-hand side of the second does 
not exceed 

where 

#u = &, &) = o(o) u{r,},...,&+‘) =c+) u{rs}, cw =(T+&) 
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Using (2.6), we obtain the second inequality of (2.9). 

Consequently 

V(X,,Y,,,R,,o”‘) s~(X,,Y,,,R,,o)-613> V,+613 

On the other hand, U(X,, _Y,,, R,, cr(‘)) G V,. This contradiction proves the theorem. 
We now consider a game T(X,, Y,, a,) that differs from l-(X,, Ye> only in the information 

state and class of admissible strategies. Let o0 EC (1.3). In the game T(X,, Y,, a,), players < 
use POLS as in Definition 1. 

Definition 3. A piecewise open-loop co-strategy S, for player E, in the game F(X,, Y,, o,) 
is a family of mappings c# = 0, 1, . . . , r) which, given the quantities (1.4) and controls I&), 
t E [t,, rl+i), produce a measurable function u = uj(t) E V, defined for t E [ti, t,,,). 

Define 

i?X,,Y,,R,,o,) = L max__&X,+, W, ), Y,+I (4 19 &+I 7 o/+1 ) 
Xl+l(r)~A(X~.Af/)Y~+~(~)EA(Y/.~~) 

(X[,Y,)E w,, 63, =4+1 
/+1 -r,,R[+, =(p, ,...,Plm+‘) 

(2.10) 

ij(X,,Y,,R,,o,) = ti vx 
x~+,(I)EA(X,,~,)YY~+I(~)EA(Y~,~~~) 

Theorem 1’. 1. Formula (2.10) defines the value of the game F(X,, Y,, a,), which is equal to 
v(X,, Y,, R,, oo). 

2. The functions v(X,, Y,, R,, o,) satisfy a Lipschitz condition in W, x R,“, i.e. for any (Xi, 
Y:, R:), (X:, Y:, R:)E w, xR: 

I~(X),Y:,R],a,)-~(X:,Y:,R:,(r,)l~ 
s Rj _ Rfll+eL(T-‘i) II m(llX1 -Jcll+lly: -y:ll) 

where L is the constant occurring in inequalities (1.2). 
Theorem 2’. Define o, o’ E C as in Theorem 2. Then 

Theorem 3’. 

lim v ( X,,Y,,R,, o(+7(Xo,YO)= inf v(X,,Y,,R,,o) 
T+m oeZ 

where o@) E Z are defined by (2.8). 
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3. THE MAIN THEOREM AND APPLICATION 

Lemma. Let o’, o” E C. Then 

The proof is analogous to that of the parallel lemma in [l]. 

Corollary. Y(X,, Y,) 6 F(X,, YO). 

Theorem 4. For any E >O, in the game T(X,, Y,) an e-equilibrium situation exists in the 
class of POLS. The value of the game P(X,, Y,) is Y(X,, Y,,) = v(X,, YO). 

The proof is analogous to that of [l]. 
Under our assumptions, we can consider a game T(X,, Y,,) of any duration T. We will 

denote any such game by I(X,, Y,, 7’) and its value by V(X,, Y,, T). 

Theorem 5. V(X,, Y,, t),as a function of t is non-increasing in [0, + -), and in any interval 
[0, T] satisfies a Lipschitz condition 

lV(X,,Y,,r,)-V(X,.Y,,t,)J~ m(t, -t*l 

The proof is analogous to that of the parallel theorem in [l]. 
We will now consider the following game of kind y(X,, Y,) the goal of team P is to capture 

all the evaders E,, while that of team E is to enable at least one of the latter to evade capture. 

Definition 4. Considering the game y(X,, YO), we shall say that encounter has been avoided 
if, for any T > 0, there exist E(T) > 0 and POLSs S, for players E,, defined in [0, T], such that 
for any trajectories xi(t) of players 8 

(3.1) 

Definition 5. We shall say that capture has occurred in the game y(X,, Y,) if T > 0 exist 
and, for any E > 0, POLSs Qi for players e, defined in [0, T], such that for any trajectories y,(t) 
of players Ej the inequality obtained by inverting the sign of (3.1) holds. 

Theorem 6. If a period of time T > 0 exists such that V(X,, Y,,, T) = 0, then capture occurs in 
the game y(X,, Y,,); but if V(X,, Y,, T) > 0 for all T > 0, then encounter can be avoided in the 
game 7(X,, YO). 

Proof. Let V(X,, Y,, T)= 0. Then, operating as in the game l?(X,, Y,, T), team P can 
guarantee itself the value V(X,, Y,,, T) to within any degree of accuracy. Hence capture must 
occur in the interval [0, T]. 

The proof of the second part of the theorem is similar. 

Remark. The possibility of evasion in the game y(X,, Y,)in the sense of Definition 5 does 
not imply the possibility of evasion over the interval [0, +-). 

Example. Consider the following game in R2 between pursuers 4 (i = 1, 2,3,4) and an evader E. The 

laws of motion are 

the initial positions are 

XP =(-LO), x; = (LO), x; = (O.-l), xi = (0,3), y” = (0.0) 
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Then encounter can be avoided in the game y(X,, Y,) in the sense of Definition 5, but the game y(X,, 
Y,) cannot be terminated in E’s favour in the interval [0, +-) (see [8]t). 

Let T,(X,, Y,) denote the following game of degree. In each situation (Qi, S,), where Qi and 
Sj are POLS for players 4 and Ej, define the value of the payoff function T(Q,, . . . , S,,,) to be 
the first time at which all the evaders Ej have been successfully captured. If capture does not 
occur in the situation (Qi, S,), define Z”(Q,, . , . , S,,J=-. Team P endeavours to minimize 
T(Qp . . . . S,,,) and team E to maximize it. We have the following. 

Theorem 7. Suppose that T,, the first time at which V(X,, Y,, T,) = 0, exists. Then the value 
of the game T(X,, Y,,) exists and is T,. 

The results of this paper may be extended to other classes of many-person differential 
games. 
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